Hello Kitty Touching Lip

Sabtu, 20 Oktober 2012

Reaksi Hidrogenasi pada Alkena

Reaksi adisi terjadi jika senyawa karbon yang mempunyai ikatan rangkap menerima atom atau gugus atom lain sehungga ikatan rangkap berubah menjadi ikatan tunggal. Ikatan rangkap merupakan ikatan tak jenuh, sedangkan ikatan tunggal merupakan ikatan jenuh. Jadi, reaksi adisi terjadi dari ikatan tak jenuh menjadi ikatan jenuh.
Mekanismenya reaksi adisi :
C = C C- C
C C C = C C – C
Salah satu dari reaksi adisi yang akan dibahas disini yaitu:

Reaksi Adisi Alkena oleh Hidrogen

Hidrogenasi merupakan reaksi hidrogen dengan senyawa organik, Reaksi ini terjadi dengan penambahan hidrogen secara langsung pada ikatan rangkap dari molekul yang tidak jenuh sehingga dihasilkan suatu produk yang jenuh. Proses hidrogenasi merupakan salah satu proses yang penting dan banyak digunakan dalam pembuatan bermacam-macam senyawa organik. Proses ini umumnya terdiri dari adisi sepasang atom hydrogen ke sebuah molekul. Reaksi dilakukan pada suhu dan tekanan yang berbeda tergantung pada substrat dan aktivitas katalis.

Reaksi adisi alkena oleh hidrogen disebut juga reaksi hidrogenasi. Reaksinya dapat digambarkan sebagai berikut.




Hidrogenasi dalam Laboratorium
Hidrogenasi etena
Etena bereaksi dengan hidrogen pada suhu sekitar 150°C dengan adanya sebuah katalis nikel (Ni) yang halus. Reaksi ini menghasilkan etana.

Reaksi ini tidak begitu berarti sebab etena merupakan senyawa yang jauh lebih bermanfaat dibanding etana yang dihasilkan! Akan tetapi, sifat-sifat reaksi dari ikatan karbon-karbon rangkap pada etena juga berlaku pada reaksi ikatan karbon-karbon rangkap yang terdapat pada alkena-alkena yang jauh lebih kompleks.
Pembuatan mentega dalam skala produksi
Beberapa mentega dibuat dengan menghidrogenasi ikatan karbon-karbon rangkap yang terdapat pada minyak dan lemak hewani atau nabati. Anda bisa mengetahui keberadaan mentega ini dalam produk-produk makanan yang dijual sebab daftar komposisi produk makanan tersebut mencatumkan kata-kata yang menunjukkan bahwa produk makanan tersebut mengandung "minyak nabati terhidrogenasi" atau "lemak terhidrogenasi".
Kesan yang terkadang timbul adalah bahwa semua mentega dibuat melalui proses hidrogenasi – pendapat ini tidak benar.
Lemak dan minyak hewani dan nabati
Lemak dan minyak dari hewan dan tumbuh-tumbuhan merupakan molekul-molekul yang mirip, yang membedakan hanya titik leburnya saja. Jika senyawanya berwujud padat pada suhu kamar, maka disebut lemak. Jika berwujud cair sering disebut sebagai minyak.
Titik lebur senyawa-senyawa ini sangat ditentukan oleh keberadaan ikatan karbon-karbon rangkap (C=C) dalam molekulnya. Semakin tinggi jumlah ikatan C=C, semakin rendah titik leburnya.
Jika senyawanya tidak mengandung ikatan C=C, maka zat tersebut dikatakan jenuh. Lemak jenuh sederhana biasanya memiliki struktur sebagai berikut:


Molekul-molekul seperti ini biasanya berwujud padat pada suhu kamar.
Jika hanya ada satu ikatan C=C pada masing-masing rantai hidrokarbon, maka zat ini disebut sebagai lemak tak-jenuh-tunggal (mono-unsaturated) (atau minyak tak-jenuh-tunggal, karena kemungkinan zat ini berwujud cair pada suhu kamar.)
Sebuah minyak tak-jenuh-tunggal yang sederhana bisa digambarkan sebagai berikut:

Jika ada dua atau lebih ikatan karbon-karbon rangkap pada masing-masing rantai, maka zat tersebut dikatan tidak-jenuh-majemuk (polyunsaturated).
Sebagai contoh:


Untuk menyederhanakan, pada semua gambar ini, ketiga rantai hidrokarbon pada masing-masing molekul dianggap sama. Meskipun tidak harus sama ketiga-tiganya – terkadang terdapat campuran beberapa jenis rantai dalam molekul yang sama.
Pembuatan mentega
Minyak-minyak nabati sering memiliki kandungan lemak (minyak) tak-jenuh-tunggal (mono-unsaturated) dan tak-jenuh-majemuk (polyunsaturated) yang tinggi, olehnya itu minyak-minyak nabati berwujud cair pada suhu kamar. Kandungan lemak dan minyak yang tinggi ini membuat minyak-minyak nabati mudah tersebar tidak beraturan pada bahan makanan seperti roti, dan tidak cocok digunakan untuk pemanggangan kue (baking powder).
Anda bisa "mengeraskan" (meningkatkan titik lebur) minyak dengan cara menghidrogenasinya dengan bantuan katalis nikel. Beberapa kondisi (seperti suhu yang tepat, atau lamanya waktu hidrogen dilewatkan ke dalam minyak) harus dikontrol dengan hati-hati sehingga beberapa (tidak harus semua) ikatan karbon-karbon rangkap mengalami hidrogenasi.
Prosedur ini menghasilkan sebuah "minyak yang terhidrogenasi parsial" atau "lemak yang terhidrogenasi parsial".
Untuk memperoleh tekstur akhir yang diinginkan, anda perlu menghidrogenasi cukup banyak ikatan. Akan tetapi, ada manfaat kesehatan yang mungkin diperoleh ketika memakan lemak atau minyak tak-jenuh-tunggal atau tak-jenuh-majemuk ketimbang lemak atau minyak yang jenuh – sehingga semua ikatan karbon-karbon rangkap yang ada dalam minyak tersebut tidak perlu dihidrogeasi semuanya.
Diagram alir berikut menunjukkan proses hidrogenasi sempurna dari sebuah minyak tak-jenuh-tunggal yang sederhana.

Kekurangan hidrogen sebagai sebuah bahan untuk mengeraskan lemak dan minyak
Ada beberapa risiko kesehatan yang mungkin ditimbulkan akibat memakan lemak atau minyak yang terhidrogenasi. Para konsumen mulai menyadari hal ini, dan pabrik-pabrik yang memproduksi makanan juga terus mencari cara-cara alternatif untuk mengubah minyak menjadi padatan yang bisa dioleskan pada makanan.
Salah satu masalah ditimbulkan oleh proses hidrogenasi.
Ikatan-ikatan rangkap pada lemak dan minyak tak-jenuh cenderung membuat gugus-gugus yang ada di sekitarnya tertata dalam bentuk "cis".
Suhu relatif tinggi yang digunakan dalam proses hidrogenasi cenderung mengubah beberapa ikatan C=C menjadi bentuk "trans". Jika ikatan-ikatan khusus ini tidak dihidrogenasi selama proses, maka mereka masih cenderung terdapat dalam produk akhir mentega khususnya pada molekul-molekul lemak trans.
Konsumsi lemak trans telah terbukti dapat meningkatkan kadar kolesterol (khususnya bentuk LDL yang lebih berbahaya) – sehingga bisa menyebabkan meningkatnya risiko penyakit jantung.
Proses apapun yang cenderung meningkatkan jumlah lemak trans dalam makanan sebaiknya dihindari. Baca dengan seksama label makanan, dan hindari makanan apapun yang mengandung (atau dimasak dalam) minyak terhidrogenasi atau lemak terhidrogenasi.

REFERENSI
http://www.chem-is-try.org/materi_kimia/sifat_senyawa_organik/alkena/hidrogenasi_alkena/
http://www.chem-is-try.org/materi_kimia/kimia-smk/kelas_xi/reaksi-subtitusi-dan-reaksi-adisi/




Rabu, 10 Oktober 2012

ALKENA


PENGERTIAN ALKENA
Alkena adalah sebuah kelompok hidrokarbon (senyawa-senyawa yang hanya mengandung hidrogendan karbon) yang mengandung ikatan karbon-karbon rangkap(C=C). Suku alkena yang paling kecil terdiri dari dua atom C, yaitu etena. Nama alkena sesuai dengan nama alkana dengan mengganti akhiran – ana menjadi -ena.
Dua alkena yang pertama adalah:
Etena = C2H4
Propena = C3H6 

RUMUS UMUM ALKENA
Alkena adalah hidrokarbon alifatik tak jenuh yang memiliki satu ikatan rangkap (C = C). Senyawa yang mempunyai dua ikatan rangkap disebut alkadiena, yang mempunyai tiga ikatan rangkap disebut alkatriena,dan seterusnya.
Bagaimana rumus umum alkena? Perhatikan senyawa-senyawa di bawah ini kemudian bandingkan!

 


Jadi rumus umumnya mempunyai 2 atom H lebih sedikit dari alkana karena itu rumus umumnya menjadi CnH2n+2-2H = CnH2n. Kekurangan jumlah atom H pada alkena dibandingkan dengan jumlah atom H pada alkana maka rumus umum alkena adalah :
CnH2n
(James E.Brady, 1990)

STRUKTUR ALKENA



















Dari tabel diatas rumus molekul untuk alkena jumlah atom H selalu dua kali jumlahatom C, sesuai dengan rumus umumnya yaitu : CnH2n

TATA NAMA ALKENA
1) Alkena rantai lurus
Nama alkena rantai lurus sesuai dengan nama–nama alkana, tetapi dengan mengganti akhiran –ana menjadi –ena.
Contoh:
• C2H4etena
• C3H6propena
• C4H8butena

2) Alkena rantai bercabang
Urutan penamaan adalah:
a) Memilih rantai induk, yaitu rantai karbon terpanjang yang mengandung ikatan rangkap.
Contoh:











b) Memberi nomor, dengan aturan penomoran dimulai dari salah satu ujung rantai induk, sehingga ikatan rangkap mendapat nomor terkecil (bukan berdasarkan posisi cabang).
Contoh:















c) Penamaan, dengan urutan:
- nomor atom C yang mengikat cabang
- nama cabang
- nomor atom C ikatan rangkap
- nama rantai induk (alkena)
Contoh:













(John Mc. Murry Fay 4th ed)

KEISOMERAN ALKENA
Alkena mempunyai dua keisomeran sebagai berikut.
1) Keisomeran Struktur
Keisomeran struktur, yaitu keisomeran yang terjadi jika rumus molekul sama, tetapi rumus struktur berbeda. Keisomeran pada alkena mulai ditemukan pada C4H8 terus ke suku yang lebih tinggi. Perhatikan contoh di bawah ini!
a) C4H8 mempunyai tiga macam isomer, yaitu:










b) C5H10 mempunyai lima macam isomer, yaitu:


















2) Keisomeran Geometri
Keisomeran geometri, yaitu keisomeran yang terjadi karena perbedaan orientasi gugus-gugus di sekitar C ikatan rangkap.
Contoh:
2–butena mempunyai dua isomer geometri, yaitu cis–2–butena dan
trans–2–butena.










Syarat terjadinya isomer geometri adalah apabila masing-masing atom karbon yang berikatan rangkap mengikat 2 atom atau 2 gugus yang berbeda, sehingga jika atom atau gugus yang diikat tersebut bertukar tempat, maka strukturnya akan menjadi berbeda.

SIFAT-SIFAT ALKENA

Sifat Fisis Alkena
Titik leleh dan titik didih alkena hampir sama dengan alkana yang sesuai. Pada suhu kamar, suku-suku rendah berwujud gas, suku-suku sedang berwujud cair, dan suku-suku tinggi berwujud padat.

























Berdasarkan tabel tersebut diketahui bahwa pada suhu kamar (25oC), tiga suku yang pertama adalah gas, suku-suku berikutnya adalah cair dan suku-suku tinggi berbentuk padat. Hal ini dipengaruhi oleh titik didih dan titik lelehnya. Mendidih adalah suatu perubahan wujud zat dari cair menjadi gas. Suatu zat yang memiliki titik didih kurang dari 25oC, pada keadaan standar (25oC, 1 atm) zat tersebut berwujud gas. Adapun zat yang memiliki titik leleh kurang dari 25oC dan titik didih di atas 25oC dalam keadaan standar, berwujud cair. 
Sifat fisis alkena, yakni titik didih mirip alkana. Hal ini dikarenakan alkena bersifat non polar dan mempunyai gaya antar molekul yang relatif lemah. Di samping itu, nilai Mr alkena hampir sama dengan alkana. seperti halnya alkana kecenderungan titik didih alkena juga naik seiring dengan pertambahan nilai Mr atau kenaikan jumlah atom karbon.
Untuk kelarutan, alkena hampir tidak dapat larut dalam air, tapi larut dalam pelarut-pelarut organik. Oleh karena itu, jika cairan alkena dicampur dengan air maka kedua cairan itu akan membentuk lapisan yang tidak saling bercampur

Sifat Kimia Alkena
Umumnya alkena lebih aktif dari alkana. Reaktifitas senyawa alkena sangat ditentukan oleh sifat ikatan rangkapnya.Sifat khas dari alkena adalah terdapatnya ikatan rangkap dua antara dua buah atom karbon. Ikatan rangkap dua ini merupakan gugus fungsional dari alkena sehingga menentukan adanya reaksi-reaksi yang khusus bagi alkena, yaitu adisi, polimerisasi dan pembakaran.

1. Alkena dapat mengalami adisi Adisi adalah pengubahan ikatan rangkap (tak jenuh) menjadi ikatan tunggal (jenuh) dengan cara menangkap atom/gugus lain. Pada adisi alkena 2 atom/gugus atom ditambahkan pada ikatan rangkap C=C sehingga diperoleh ikatan tunggal C-C. Beberapa contoh reaksi adisi pada alkena:
a. Reaksi alkena dengan halogen (halogenisasi)











b. Reaksi alkena dengan hidrogen halida (hidrohalogenasi) Hasil reaksi antara alkena dengan hidrogen halida dipengaruhi oleh struktur alkena, apakah alkena simetris atau alkena asimetris.

alkena simetris : akan menghasilkan satu haloalkana.

 • alkena asimetris akan menghasilkan dua haloalkana. Produk utana reaksi dapat diramalkan menggunakan aturan Markonikov, yaitu: Jika suatu HX bereaksi dengan ikatan rangkap asimetris, maka produk utama reaksi adalah molekul dengan atom H yang ditambahkan ke atom C dalam ikatan rangkap yang terikat dengan lebih banyak atom H.













c.  Reaksi alkena dengan hidrogen (hidrogenasi)
1. Reaksi ini akan menghasilkan alkana.







2. Alkena dapat mengalami polimerisasi. Polimerisasi adalah penggabungan molekul-molekul sejenis menjadi molekul-molekul raksasa sehingga rantai karbon sangat panjang. Molekul yang bergabung disebut monomer, sedangkan molekul raksasa yang terbentuk disebut polimer.












.


pembakaran alkena Pembakaran alkena (reaksi alkena dengan oksigen) akan menghasilkan COdan H2O.
CH2=CH2 + 2 O2 → 2CO2 + 2H2O

SUMBER DAN KEGUNAAN ALKENA
Dalam industri, alkena dibuat dari alkana melalui pemanasan dengan katalis, yaitu dengan proses yang disebut perengkahan atau cracking. 
Di alam, sumber alkena berada dalam jumlah yang kecil, sehingga alkena harus disintesis dari gas alam dan minyak bumi melalui reaksi perekahan.
Kegunaan alkena sebagai berikut :
Dapat digunakan sebagai obat bius (dicampur dengan O2)
Untuk memasakkan buah-buahan
bahan baku industri plastik, karet sintetik, farmasi dan insektisida.


SUMBER ARTIKEL :
http://www.chem-is-try.org/materi_kimia/kimia-sma-ma/rumus-umum-tata-nama-dan-keisomeran-alkena/
http://www.chem-is-try.org/materi_kimia/kimia_organik_dasar/hidro-karbon/sifat-sifat-alkena/
http://kimia.upi.edu/utama/bahanajar/kuliah_web/2009/0703918/sifat.html

*dibuat berdasarkan slide12*